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The nonsteady mixing of heat carrier in a bundle of spiral tubes with azimuthal 
nonuniformity of the heat supply is considered. The peculiarities of the solu- 
tion of this problem using a two-temperature model of the flow of homogenized 
two-phase medium with motionless solid phase are shown. The nonsteady tempera- 
ture fields of the heat carrier are investigated experimentally for the case of 
sharp increase and decrease in the thermal-load power over time. Recommendations 
are given regarding the calculation of the nonsteady coefficients used to close 
the initial system of equations. 

Introduction 

Nonsteady thermohydraulic processes in bundles of spiral tubes have a series of fea- 
tures associated with their design features [i]. It was shown in [I] that, in channels of 
complex shape formed by bundles of spiral tubes, significantly greater difference in the 
nonsteady heat-transfer coefficients than in circular tubes is seen. It is determined by 
the rates of variation in the quantities appearing in the boundary conditions, for example, 
the wall temperature. In [1-4], it was also found that, with variation in thermal-load 
power and heat-carrier flow rate over time, there is restructuring of the temperature fields, 
and the dimensionless effective turbulent-diffusion coefficient 

Kn= Dt/ud~ (1) 

characterizing the intensity of interchannel mixing of the heat carrier in a bundle of spiral 
tubes is variable over time. The heat-transfer coefficients and effective turbulent-diffu- 
sion coefficients may be either larger or smaller than their quasi-steady values, depending 
on whether the thermal-load power (or heat-carrier flow rate) increases or decreases over 
time. 

Since nonsteady heat- and mass-transfer processes are characterized by high rates of 
variation of the parameters, they may be determining factors for the efficiency of heat exchangers 
in startup, transient, and emergency conditions of operation. Therefore, thermohydraulic 
calculations of nonsteady operating conditions of heat exchangers must be based on detailed 
investigation of the transport properties of the flux. Reliable methods of calculation of 
nonsteady temperature fields must be developed and experimentally tested. 

In [1-4], this was done for axisymmetric nonequilibrium heat supply (heat liberation). 
At the same time, it is of great practical importance to study the nonsteady heat and mass 
transfer with azimuthal nonuniformity of the heat supply (heat liberation), which is observed 
with lateral input (output) of the heat carrier in the intertube space of a heat exchanger 
with spiral tubes. 

The results of theoretical and experimental investigation of the nonsteady mixing in 
bundles of spiral tubes with azimuthal nonuniformity of the heat liberation are outlined 
below. 

i. Theoretical Calculation of Temperature Fields 

The model of the flow of a homogenized two-phase medium with a motionless solid phase, 
used previously to solve the axisymmetric problem [1-4], is employed for theoretical calcula- 
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tion of the three-dimensional temperature fields. 
are written in the quasi-steady approximation, and the equation for the flow rate is used 

instead of the continuity equation; the system of equations takes the form 

OTs _ qv (r, ~, x, ~) 4 ~  

In this case, the gas-dynamics equations 
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The boundary conditions of the problem for the thermally nonsteady case are as follows: 
when T = 0 

p (x, o) : ;o (x), 
Ts (r, % x, 0 )=  Tso(r, % x), 

T(r, % x, o )=  To(r, % x), (7) 

u(r, % x, O)=uo(r, % x); 

the conditions at the bundle input (x = 0) 

the periodicity conditions 

u(r, q), 0 ) =  Uin(r, ~), 

T ( r ,  % 0, ~ )=T i i  n (r, % ~), 

t%(r, r o, T) - -T~.W,  ~, ~); 

(8) 

when x = s 

u(r, % x ) =  u(r, ~ + 2a, x), 

T(r, % x, "c)= T(r, ~-4-2a, x, "~), 

T~ (r, ,r x, ~ ) =  Ts (r, ~ + 2~, x, ~); 

(9) 

when r = r c 

OTs ~= =0 ,  0T I =0 ;  (10) 
ax ~ I~=l 

OG r~rc 
aTs = 0, aT = 0, ~ = 0. (11) 
ar I,=,o ~ ..... r 

The finite-difference method with implicit schemes is used to solve the system of non- 
linear equations of parabolic type in Eqs. (2)-(6) with coefficients depending on the 
parameters to be determined and with the boundary conditions in Eqs. (7)-(11) [5]. A stable 
solution may be obtained here with sufficiently broad variation in the ratio of the space- 
time steps. The algorithm for solution of the problem is based on the variable-direction 
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method, which is facilitated by the assumption that the velocity vector is parallel to the 
bundle axis in Eq. (4). In the numerical analogs of the initial equations, the empirical 
coefficients are taken out from under the differentiation sign and averaged over points of 
the spatial grid as a function of the direction of differentiation. 

Realization of the variable-direction method with respect to r and x entails knowing 
the value of the desired function at the first calculation point or the relation between 
the values of this function at the bundle axis and at the first calculation radius. In the 
case of solving an axisymmetric problem, this relation may easily be obtained by using the 
L'Hopital rule to reveal indeterminacies of type (i/r)8/Sr at the point r = 0 with subse- 
quent use of the symmetry aondition at this point. In solving the spatial problem, the 
symmetry condition is not met in the general case; therefore, the well-known Gershgorin 
method is used to solve the problem: in the vicinity of the zero point (r = 0), the cylin- 
drical region is replaced by a rectangular region, and the desired functions at the points 
of this region are determined as arithmetic means of the azimuthal values at the first cal- 
culation radius from the zero point. Using the Gershgorin method for an implicit finite- 
difference scheme, it is simple to obtain the relations for the first values of the fitting 
coefficients required for the fitting in the direction r. 

To find the whole set of values of the desired functions over the radius in each ray 
of the spatial grid, the boundary condition at the external boundary of the bundle in Eq. 
(ii) is used. In writing this condition in finite-difference form, the difference grid is 
constructed so that the physical boundary of the bundle is in the middle of the last calcu- 
lation interval over the radius. Certain difficulties arise in fitting in the azimuthal 
direction ~, as a result of the presence of the specific boundary condition of periodicity 
of the functions in Eq. (9) over the azimuth. To solve the numerical analogs of the initial 
equations, the method of cyclic fitting considered by Samarskii is used: essentially, the 
initial three-point finite-difference equation is written in the form of the system 

. . . .  al~,v_l + c l~ i - -  ~ig~ = [i, k = 1; 

--ahgh_l+Ckg~--b~+l=[~, 2 < k < N ;  g N = g l ,  (12)  

where Yk i s  t h e  d e s i r e d  f u n c t i o n ;  k i s  t h e  index  o f  t h e  p o i n t s  o v e r  t h e  a z i m u t h ;  N i s  t h e  
number o f  p o i n t s  o v e r  t h e  a z i m u t h .  Us ing  t h e  s e t  o f  r e c u r r e n c e  r e l a t i o n s ,  t h e  f i t t i n g  f a c -  
tors are found, and using the condition YN = Yz the whole set of values of the desired func- 
tions over the azimuth is found. 

After fitting in all three directions, iteration with respect to the values of the co- 
efficients in the equations is undertaken. The convergence is monitored from the pressure 
value, to an accuracy of 0.01%. 

The coefficients lef and ~ef in Eqs. (3) and (4) are related to the coefficient D t in 
Eq. (i) as lef = Dtpcp and Vef = Dt, under the assumption that the turbulent Lewis and 
Prandtl numbers are unity. 

2. Experimental Investigation of Heat-Carrier Mixing 

The dimensionless effective turbulent-diffusion coefficient in Eq. (i) required for 
closure of the system in Eqs. (2)-(6) is determined experimentally by the method of heat 
diffusion from a group of heated tubes [i]. It is known that, with asymmetric nonuniformity 
of the heat supply, peculiarities of the heat and mass transfer are only observed in the 
peripheral region of the bundle close to the casing wall, within the limits of a single row 
of tubes [6]. Since the influence of the peripheral flow region in many-tube bundles on the 
heat and mass transfer in the central cells of the bundle is not significant, it is expedi- 
ent to investigate the nonsteady temperature fields of the heat carrier and the coefficient 
K n with asymmetric nonuniformity of the heat liberation using a heated zone of the bundle in 
the form of an equilateral trapezium, when peripheral effects are minimal. 

A zone containing 46 heated tubes (Fig. i) is electrically insulated by means of coated 
(with organosilicate lacquer) sleeves of glassfiber tissue which are slipped onto the un- 
heated tubes surrounding the heated zone of the bundle. Experiments are conducted with a 
bundle of 151 spiral tubes with maximum dimensions of the oval profile d = 12.2 mm and s = 
152 mm on the experimental apparatus described in [i]. The temperature field of the heat 
carrier is measured in the output cross section of the bundle using a set of ii thermocou- 
ples in a coordinate mechanism at the centers of the cells with coordinates ~ = ~ and r/r c 
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Fig. i. Position of heating zone in bun- 
dle: i) casing; 2) group of 46 heated 
tubes; 3) unheated tubes 
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Fig. 2. Temperature variation of heat carrier over time with 
sharp increase (a) and decrease (b) in thermal load: I, 2) 
power with Re = 4.!3"103 and 1.625"104; 3-5) temperature for 

= 0 and r/r c = 0.482, 0.739, 0.865 with Re = 4.13"i0a; 6-8) 
the same with Re = 1.625"104; N, kW; T, K; T, sec. 

= 0.310, 0.172, 0.085; @ = 0 and r/r c = 0.088, 0.229, 0.347, 0.482, 0.606, 0.739, 0.865, and 
0.997. The heat-carrier temperature at the bundle input is measured by three thermocouples. 
An automated system is used for control of the experiment and data collection and processing 
[i]. The experiment is conducted with Re = 3.5"105-2.1-104 , G = 0.08-0.55 kg/sec, N ~ 15 kW 
with increase and decrease in thermal load and with the number Fr m = s2/dde, which charac- 
terizes the intensity of flow swirling in bundles of spiral tubes, equal to 220. 

The experimental results for the nonsteady temperature fields of the heat carrier in 
the output cross section of the bundle are shown in Fig. 2a for asymmetric nonuniformity of 
the heat carrier with sharp increase in thermal load over time and constant heat-carrier 
flow rate, and in Fig. 2b with sharp decrease in thermal load and G = const. It is evident 
that, with sharp increase in thermal load, the heat-carrier temperature increases over time, 
gradually tending to steady conditions. The rate at which the temperature approaches steady 
conditions increases with increase in Re. The time for the temperature to reach steady con- 
ditions is greater in the heated zone of the bundle, for nonsteady conditions of the given 
types (Fig. 2). 

The dimensionless effective diffusion coefficients for nonsteady conditions of the given 
type and asymmetric nonuniformity of the heat liberation are determined by comparing the ex- 
perimental and theoretical temperature fields of the heat carrier, as in the case of axisym- 
metric nonuniformity of the heat supply [i]. It is established here that the nonsteady ef- 
fective coefficient K n with sharp increase in thermal load may be described by the depend- 
ence established in [I] for the case of axisymmetric nonuniformity of heat liberation 

_o 

•  Kr  - -0 ,307.10-~Fom ~ - 0 , 2 2 6 - 1 0 - ~ F o ~  1@0,91,  (13 )  
5s 

which  i s  v a l i d  when Fe m = 220 and Re = 3 . 5 " 1 0 a - 2 . 1 - 1 0 4 .  I n  Eq. ( 1 3 ) ,  t h e  m o d i f i e d  F o u r i e r  
number i s  d e f i n e d  by t h e  e x p r e s s i o n  
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Fig. 3. Comparison of experimental and theoretical heat- 
carrier temperatures with sharp increase in thermal load: 
i) power with Re = 1.625"i0~; 2-4) theoretical temperature 
for ~ = 0 and r/r c = 0.482, 0.739, and 0.865, respectively; 
5-7) experimental temperature at the same values of ~ and 
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Fig. 4. Temperature field of heat car- 
rier in output cross section of bundle 
with increase in power from 0 to 5.2 
kW when Re = 4.13" 103: 1-4) calcula- 
tion with T = i0, 20, 40, and 60 sec, 
respectively; 5-10) experiment at T = 
0, i0, 20, 40, 60, and i00 sec, re- 
spectively. 

Fo~.-- %b('~--'c~ 0,043+ ~ ' (14) 
CpbPbd2 c max 

where z0 i s  t h e  t ime  p r e c e d i n g  t h e  o n s e t  o f  s h a r p  i n c r e a s e  in  t h e  power N. When laN/atlmax 
> 3 . 6 4 ,  t h e  e x p r e s s i o n  in  s q u a r e  b r a c k e t s  in  Eq. (14)  i s  e q u a l  t o  u n i t y .  

I n  t h e  c a s e  o f  s h a r p  i n c r e a s e  in  t h e r m a l  l o a d ,  K n confo rms  t o  t h e  f o l l o w i n g  dependence  
with azimuthal nonuniformity of the heat liberation 

Kr = 0,45_,4.10 -5 FOm 2 --3,86.10-3Fo~ i + 1,28, 
•  K (15) 

qs 
when Re = 3 . 5 " 1 0 3 - 2 . 1 " 1 0 4  and Fo m < 1 . 4 ' 1 0  -2 .  I n  Eq. ( 1 5 ) ,  Fo m i s  d e t e r m i n e d  f rom Eq. (14)  
(z0 = 0 ) .  The c o e f f i c i e n t  Kqs in  Eqs.  (13)  and (15)  i s  d e t e r m i n e d  f rom t h e  f o r m u l a  o f  [ 7 ] .  

The experimental temperatures at the output cross section of the bundle for various 
times at points with the coordinates r/r c = 0.482, 0.739, and 0.805 and ~ = 0 are compared 
with the theoretical temperature fields of the heat carrier, with closure of the system in 
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Eqs. (1)-(6) by means of Eq. (13), in Fig. 3. The good agreement between the experimental 
and theoretical heat-carrier temperatures seen in Figs. 3 and 4 for various times may serve 
as the experimental basis for the model of flow of the homogenized medium used to solve the 
given problem and the method developed for calculating the temperature fields in bundles of 
spiral tubes with azimuthal nonuniformity of the heat supply. 

Conclusion 

The model of flow developed and experimentally tested here, with the corresponding 
method of thermohydraulic calculation, taking account of interchannel mixing of the heat 
carrier, may be used, together with the experimental dependences for calculating the effec- 
tive diffusion coefficients, in determining the nonsteady temperature fields in heat ex- 
changers with spiral tubes, and permit the estimation of their conditions of safe operation 
in transient situations. 

NOTATION 

K, dimensionless effective tubulent diffusion coefficient; N, thermal-load power; ~, 
time; G, heat-carrier flow rate; Dt, effective diffusion coefficient; Vef, effective vis- 
cosity; T, temperature; u, velocity; de, equivalent diameter; Fr m, number characterizing 
the intensity of swirling of the flow in a bundle of spiral tubes; s, turn length of spiral 
tube; d, maximum dimension of tube profile; Fo, Fourier number; dc, rc, diameter and radius 
of heat-exchanger casing; Z, length of tube bundle; ~, thermal conductivity; Cp, specific 
heat; p, density; x, r, ~, longitudinal, radial, and azimuthal coordinates; Re, Reynolds 
number; ~, heat-transfer coefficient; qv, volume density of energy liberation; p, pressure; 
<, relative diffusion coefficient; $, hydraulic drag; ~, porosity of tube bundle with re- 
spect to heat carrier. Indices: s, solid phase; n, nonsteady; qs, quasi-steady; b, mean- 
mass; ef, effective; m, modified. 
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